Structure–function analysis of HsiF, a gp25-like component of the type VI secretion system, in Pseudomonas aeruginosa
نویسندگان
چکیده
Bacterial pathogens use a range of protein secretion systems to colonize their host. One recent addition to this arsenal is the type VI secretion system (T6SS), which is found in many Gram-negative bacteria. The T6SS involves 12-15 components, including a ClpV-like AAA(+) ATPase. Moreover, the VgrG and Hcp components have been proposed to form a puncturing device, based on structural similarity to the tail spike components gp5/gp27 and the tail tube component gp19 of the T4 bacteriophage, respectively. Another T6SS component shows similarity to a T4 phage protein, namely gp25. The gp25 protein has been proposed to have lysozyme activity. Other T6SS components do not exhibit obvious similarity to characterized T4 phage components. The genome of Pseudomonas aeruginosa contains three T6SS gene clusters. In each cluster a gene encoding a putative member of the gp25-like protein family was identified, which we called HsiF. We confirmed this similarity by analysing the structure of the P. aeruginosa HsiF proteins using secondary and tertiary structure prediction tools. We demonstrated that HsiF1 is crucial for the T6SS-dependent secretion of Hcp and VgrG. Importantly, lysozyme activity of HsiF proteins was not detectable, and we related this observation to the demonstration that HsiF1 localizes to the cytoplasm of P. aeruginosa. Finally, our data showed that a conserved glutamate, predicted to be required for proper HsiF folding, is essential for its function. In conclusion, our data confirm the central role of HsiF in the T6SS mechanism, provide information on the predicted HsiF structure, and call for reconsideration of the function of gp25-like proteins.
منابع مشابه
فراوانی ژنهای کد کننده سیتوتوکسینهای exoT، exoY، exoS وexoU سیستم ترشحی تیپ 3 در سودوموناس آئروجینوزا جدا شده از بیماران سوختگی
Background and Objective: Pseudomonas aeruginosa is an opportunistic pathogen causing nosocomial burn infections. Disease results from the production of numerous virulence factors, some of which are injected directly into the eukaryotic host cells via the type III secretion system (T3SS).The aim of this study was to determine the prevalence of cytotoxins encoding exoT, exoY, exoS and exoU genes...
متن کاملStructural Insights on the bacteriolytic and self-protection mechanism of muramidase effector Tse3 in Pseudomonas aeruginosa.
The warfare among microbial species as well as between pathogens and hosts is fierce, complicated, and continuous. In Pseudomonas aeruginosa, the muramidase effector Tse3 (Type VI secretion exported 3) can be injected into the periplasm of neighboring bacterial competitors by a Type VI secretion apparatus, eventually leading to cell lysis and death. However, P. aeruginosa protects itself from l...
متن کاملMolecular Investigation of Outer Membrane Channel Genes Among Multidrug Resistance Clinical Pseudomonas Aeruginosa Isolates
Background: Multidrug resistance Pseudomonas aeruginosa (MDRPA) is most important issue in healthcare setting. It can secrete many virulence effector proteins via its secretion system type (T1SS-T6SS). They are using them as conductor for delivering the effector proteins outside to begins harmful effect on host cell increasing pathogenicity, competition against other microorganism and nutrient ...
متن کاملA type VI secretion system of Pseudomonas aeruginosa targets a toxin to bacteria.
The functional spectrum of a secretion system is defined by its substrates. Here we analyzed the secretomes of Pseudomonas aeruginosa mutants altered in regulation of the Hcp Secretion Island-I-encoded type VI secretion system (H1-T6SS). We identified three substrates of this system, proteins Tse1-3 (type six exported 1-3), which are coregulated with the secretory apparatus and secreted under t...
متن کاملStructural Basis for Type VI Secretion Effector Recognition by a Cognate Immunity Protein
The type VI secretion system (T6SS) has emerged as an important mediator of interbacterial interactions. A T6SS from Pseudomonas aeruginosa targets at least three effector proteins, type VI secretion exported 1-3 (Tse1-3), to recipient Gram-negative cells. The Tse2 protein is a cytoplasmic effector that acts as a potent inhibitor of target cell proliferation, thus providing a pronounced fitness...
متن کامل